194 research outputs found

    Power efficient and high performance VLSI architecture for AES algorithm

    Get PDF
    AbstractAdvanced encryption standard (AES) algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay

    Frequency dependent core shifts and parameter estimation for the blazar 3C 454.3

    Full text link
    We study the core shift effect in the parsec scale jet of the blazar 3C 454.3 using the 4.8 GHz - 36.8 GHz radio light curves obtained from three decades of continuous monitoring. From a piecewise Gaussian fit to each flare, time lags Δt\Delta t between the observation frequencies ν\nu and spectral indices α\alpha based on peak amplitudes AA are determined. From the fit Δtν1/kr\Delta t \propto \nu^{1/k_r}, kr=1.10±0.18k_r = 1.10 \pm 0.18 indicating equipartition between the magnetic field energy density and the particle energy density. From the fit AναA \propto \nu^\alpha, α\alpha is in the range 0.24-0.24 to 1.521.52. A mean magnetic field strength at 1 pc, B1=0.5±0.2B_1 = 0.5 \pm 0.2 G, and at the core, Bcore=46±16B_{\rm core} = 46 \pm 16 mG, are inferred, consistent with previous estimates. The measure of core position offset is Ωrν=6.4±2.8\Omega_{r\nu} = 6.4 \pm 2.8 pc GHz1/kr^{1/k_r} when averaged over all frequency pairs. Based on the statistical trend shown by the measured core radius rcorer_{\rm core} as a function of ν\nu, we infer that the synchrotron opacity model may not be valid for all cases. A Fourier periodogram analysis yields power law slopes in the range 1.6-1.6 to 3.5-3.5 describing the power spectral density shape and gives bend timescales in the range 0.520.66 0.52 - 0.66~yr. This result, and both positive and negative α\alpha, indicate that the flares originate from multiple shocks in a small region. Important objectives met in our study include: the demonstration of the computational efficiency and statistical basis of the piecewise Gaussian fit; consistency with previously reported results; evidence for the core shift dependence on observation frequency and its utility in jet diagnostics in the region close to the resolving limit of very long baseline interferometry observations.Comment: 12 pages, 11 figures (23 sub-figures), 5 tables. Accepted for publication in MNRA

    A peculiar multi-wavelength flare in the Blazar 3C 454.3

    Full text link
    The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the 200\sim 200 d span over which multi-band data are available. In one of them, the V and J bands appear to lead the γ\gamma-ray and X-ray bands by a few days; in the other, all variations are simultaneous.Comment: 11 pages, 4 figures, 2 tables; MNRAS in pres

    Математическая модель потоков покупателей двухпродуктовой торговой компании в виде системы массового обслуживания с повторными обращениями к блокам

    Get PDF
    Построена математическая модель формирования потока покупателей торговой компании в виде системы параллельного обслуживания кратных заявок с повторным обращением и неограниченным числом обслуживающих приборов, получено выражение для математического ожидания капитала торговой компании, а также найдено условие для существования максимума этой функции. Для конкретного примера определено оптимальное отношение стоимости подарка к средней стоимости покупки, обеспечивающее максимальную прибыль компании

    A ~4.6 h quasi-periodic oscillation in the BL Lacertae PKS 2155-304?

    Full text link
    We report a possible detection of an ~4.6-hour quasi-periodic oscillation (QPO) in the 0.3-10 keV emission of the high-energy peaked blazar PKS 2155-304 from a 64 ks observation by the XMM-Newton EPIC/pn detector. We identify a total modulation of ~5% in the light curve and confirm that nominal period by periodogram, structure function and wavelet analyses. The limited light curve duration allows the capture of only 3.8 cycles of this oscillation and thus precludes a very strong claim for this QPO, despite a nominally high (>3 sigma) statistical significance. We briefly discuss models capable of producing an X-ray QPO of such a period in a blazar.Comment: 4 pages, 6 figures, accepted for publication in A&A Letter

    Multiwavelength Intraday Variability of the BL Lac S5 0716+714

    Full text link
    We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The variability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the source's intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL\,Lac type object, is remarkably high.Comment: 16 pages, 15 figures, table 2; Accepted for Publication in MNRA

    A comparison of common programming languages used in bioinformatics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of different programming languages has previously been benchmarked using abstract mathematical algorithms, but not using standard bioinformatics algorithms. We compared the memory usage and speed of execution for three standard bioinformatics methods, implemented in programs using one of six different programming languages. Programs for the Sellers algorithm, the Neighbor-Joining tree construction algorithm and an algorithm for parsing BLAST file outputs were implemented in C, C++, C#, Java, Perl and Python.</p> <p>Results</p> <p>Implementations in C and C++ were fastest and used the least memory. Programs in these languages generally contained more lines of code. Java and C# appeared to be a compromise between the flexibility of Perl and Python and the fast performance of C and C++. The relative performance of the tested languages did not change from Windows to Linux and no clear evidence of a faster operating system was found.</p> <p>Source code and additional information are available from <url>http://www.bioinformatics.org/benchmark/</url></p> <p>Conclusion</p> <p>This benchmark provides a comparison of six commonly used programming languages under two different operating systems. The overall comparison shows that a developer should choose an appropriate language carefully, taking into account the performance expected and the library availability for each language.</p

    Deep GMRT 150 MHz observations of the LBDS-Lynx region: Ultra-Steep Spectrum Radio Sources

    Full text link
    It has been known for nearly three decades that high redshift radio galaxies exhibit steep radio spectra, and hence ultra-steep spectrum radio sources provide candidates for high-redshift radio galaxies. Nearly all radio galaxies with z > 3 have been found using this redshift-spectral index correlation. We have started a programme with GMRT to exploit this correlation at flux density levels about 10 to 100 times deeper than the known high-redshift radio galaxies which were identified primarily using the already available radio catalogues. In our programme, we have obtained deep, high resolution radio observations at 150 MHz with GMRT for several 'deep' fields which are well studied at higher radio frequencies and in other bands of the electromagnetic spectrum, with an aim to detect candidate high redshift radio galaxies. In this paper we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been already imaged at 327, 610 and 1412 MHz with the WSRT and at 1400 and 4860 MHz with the VLA. The 150 MHz image made with GMRT has a rms noise of ~0.7 mJy/beam and a resolution of ~19" X 15". It is the deepest low frequency image of the LBDS-Lynx field. The source catalog of this field at 150 MHz has about 765 sources down to ~20% of the primary beam response, covering an area of about 15 degree2^2. Spectral index was estimated by cross correlating each source detected at 150 MHz with the available observations at 327, 610, 1400 and 4860 MHz and also using available radio surveys such as WENSS at 327 MHz and NVSS and FIRST at 1400 MHz. We find about 150 radio sources with spectra steeper than 1. About two-third of these are not detected in SDSS, hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the redshift.Comment: Accepted for publication in MNRAS, 24 pages (including 12 pages online material), 9 Figures, 5 Table

    Multiwavelength characterization of faint ultra steep spectrum radio sources: a search for high-redshift radio galaxies

    Get PDF
    Context. Ultra steep spectrum (USS) radio sources are one of the efficient tracers of powerful high-z radio galaxies (HzRGs). In contrast to searches for powerful HzRGs from radio surveys of moderate depths, fainter USS samples derived from deeper radio surveys can be useful in finding HzRGs at even higher redshifts and in unveiling a population of obscured weaker radio-loud AGN at moderate redshifts. Aims. Using our 325 MHz GMRT observations (5σ ∼ 800 μJy) and 1.4 GHz VLA observations (5σ ∼ 80−100 μJy) available in two subfields (VLA-VIMOS VLT Deep Survey (VLA-VVDS) and Subaru X-ray Deep Field (SXDF)) of the XMM-LSS field, we derive a large sample of 160 faint USS radio sources and characterize their nature. Methods. The optical and IR counterparts of our USS sample sources are searched using existing deep surveys, at respective wavelengths. We attempt to unveil the nature of our faint USS sources using diagnostic techniques based on mid-IR colors, flux ratios of radio to mid-IR, and radio luminosities. Results. Redshift estimates are available for 86/116 (∼74%) USS sources in the VLA-VVDS field and for 39/44 (∼87%) USS sources in the SXDF fields with median values (zmedian) ∼1.18 and ∼1.57, respectively, which are higher than estimates for non-USS radio sources (zmedian non−USS ∼ 0.99 and ∼0.96), in the two subfields. The MIR color–color diagnostic and radio luminosities are consistent with most of our USS sample sources at higher redshifts (z > 0.5) being AGN. The flux ratio of radio to mid-IR (S 1.4 GHz/S 3.6 μm) versus redshift diagnostic plot suggests that more than half of our USS sample sources distributed over z ∼ 0.5 to 3.8 are likely to be hosted in obscured environments. A significant fraction (∼26% in the VLA-VVDS and ∼13% in the SXDF) of our USS sources without redshift estimates mostly remain unidentified in the existing optical, IR surveys, and exhibit high radio to mid-IR flux ratio limits similar to HzRGs, and so, can be considered as potential HzRG candidates. Conclusions. Our study shows that the criterion of ultra steep spectral index remains a reasonably efficient method to select high-z sources even at sub-mJy flux densities. In addition to powerful HzRG candidates, our faint USS sample also contains populations of weaker radio-loud AGNs potentially hosted in obscured environments

    Optical variability properties of high luminosity AGN classes

    Get PDF
    We present the results of a comparative study of the intra-night optical variability (INOV) characteristics of radio-loud and radio-quiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift range {\it z} 0.2\simeq 0.2 to {\it z} 2.2\simeq 2.2. The sample, matched in the optical luminosity -- redshift (MB_B -- z) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobe-dominated quasars (LDQs), six radio core-dominated quasars (CDQs) and five BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a night. Considering cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 72% respectively for RQQs, LDQs, CDQs, and BLs. The low amplitude and low DC of INOV shown by RQQs compared to BLs can be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no unambiguous general trend of a correlation between the INOV amplitude and the apparent optical brightness of the quasar is noticed.Comment: 36 pages, 14 Figures, due to large size Fig. 5,6,11 and 12 are not included. Intersted people contact to [email protected]. Submitted to Journal of Astrophysics and Astronom
    corecore